Changes in the flexion-relaxation response induced by hip extensor and erector spinae muscle fatigue
نویسندگان
چکیده
BACKGROUND The flexion-relaxation phenomenon (FRP) is defined by reduced lumbar erector spinae (ES) muscle myoelectric activity during full trunk flexion. The objectives of this study were to quantify the effect of hip and back extensor muscle fatigue on FRP parameters and lumbopelvic kinematics. METHODS Twenty-seven healthy adults performed flexion-extension tasks under 4 different experimental conditions: no fatigue/no load, no fatigue/load, fatigue/no load, and fatigue/load. Total flexion angle corresponding to the onset and cessation of myoelectric silence, hip flexion angle, lumbar flexion angle and maximal trunk flexion angle were compared across different experimental conditions by 2 x 2 (Load x Fatigue) repeated-measures ANOVA. RESULTS The angle corresponding to the ES onset of myoelectric silence was reduced after the fatigue task, and loading the spine decreased the lumbar contribution to motion compared to the hip during both flexion and extension. A relative increment of lumbar spine motion compared to pelvic motion was also observed in fatigue conditions. CONCLUSIONS Previous results suggested that ES muscles, in a state of fatigue, are unable to provide sufficient segmental stabilization. The present findings indicate that, changes in lumbar-stabilizing mechanisms in the presence of muscle fatigue seem to be caused by modulation of lumbopelvic kinematics.
منابع مشابه
Kinesio Taping Applied to Lumbar Muscles in Static Lumbar Flexion
Purpose: In approaching full trunk flexion (75%-80% of full flexion), myoelectric activity of lumbar erector spinae muscles is reduced or silenced; this response is known as flexion-relaxation phenomenon (FRP). FRP is a shift in load sharing and spinal stabilization from active structures (erector spinae muscles) to passive ligamentous and articular structures. Static lumbar flexi...
متن کاملAnalyses of myo-electrical silence of erectors spinae.
Electromyographic activity of the erector spinae was studied in 25 healthy, young individuals during forward bending and then coming back to erect posture. Sudden onset of electrical silence called the flexion-relaxation phenomenon was seen to occur in all at 57% of the maximum hip flexion and at 84% of the maximum vertebral flexion. Abrupt re-commencement of the activity was seen at almost sim...
متن کاملAn unstable base alters limb and abdominal activation strategies during the flexionrelaxation response.
The flexion-relaxation phenomenon consisting of an erector spinae silent period occurring with trunk flexion can place considerable stress upon tissues. Since individuals often flex their trunks while unstable, the purpose of the study was to examine the effect of an unstable base on the flexion-relaxation response. Fourteen participants flexed at the hips and back while standing on a stable fl...
متن کاملChanges in the flexion relaxation response induced by lumbar muscle fatigue
BACKGROUND The flexion relaxation phenomenon (FRP) is an interesting model to study the modulation of lumbar stability. Previous investigations have explored the effect of load, angular velocity and posture on this particular response. However, the influence of muscular fatigue on FRP parameters has not been thoroughly examined. The objective of the study is to identify the effect of erector sp...
متن کاملEffect of chronic knee osteoarthritis on flexion-relaxation phenomenon of the erector spinae in elderly females
[Purpose] This study investigated the flexion-relaxation phenomenon of the erector spinae in elderly women with chronic knee osteoarthritis and determined whether the flexion-relaxation phenomenon can be used as a pain evaluation tool in such cases. [Subjects and Methods] Seventeen elderly females with chronic knee osteoarthritis and 13 healthy young females voluntarily participated in this stu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 11 شماره
صفحات -
تاریخ انتشار 2010